Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 692
Filtrar
1.
BMC Microbiol ; 24(1): 46, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302896

RESUMO

BACKGROUND: Campylobacter jejuni and Campylobacter coli are the major causative agents of bacterial gastroenteritis worldwide and are known obligate microaerophiles. Despite being sensitive to oxygen and its reduction products, both species are readily isolated from animal food products kept under atmospheric conditions where they face high oxygen tension levels. RESULTS: In this study, Transposon Directed Insertion-site Sequencing (TraDIS) was used to investigate the ability of one C. jejuni strain and two C. coli strains to overcome oxidative stress, using H2O2 to mimic oxidative stress. Genes were identified that were required for oxidative stress resistance for each individual strain but also allowed a comparison across the three strains. Mutations in the perR and ahpC genes were found to increase Campylobacter tolerance to H2O2. The roles of these proteins in oxidative stress were previously known in C. jejuni, but this data indicates that they most likely play a similar role in C. coli. Mutation of czcD decreased Campylobacter tolerance to H2O2. The role of CzcD, which functions as a zinc exporter, has not previously been linked to oxidative stress. The TraDIS data was confirmed using defined deletions of perR and czcD in C. coli 15-537360. CONCLUSIONS: This is the first study to investigate gene fitness in both C. jejuni and C. coli under oxidative stress conditions and highlights both similar roles for certain genes for both species and highlights other genes that have a role under oxidative stress.


Assuntos
Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Animais , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Campylobacter coli/genética , Campylobacter coli/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estresse Oxidativo/genética , Oxigênio/metabolismo , Infecções por Campylobacter/microbiologia
2.
Carbohydr Res ; 536: 109058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354653

RESUMO

Campylobacters are important causes of gastrointestinal illness and the capsular polysaccharides (CPS) they produce are key virulence factors and targets for vaccine development. We report here the synthesis of two fragments of the Campylobacter jejuni CG8486 strain CPS that contain a rare 6-deoxy-d-ido-heptopyranose residue and, in one target, two O-methyl phosphoramidate (MeOPN) motifs. The synthetic approach features the stereoselective construction of the ß-d-ido-heptopyranoside linkage via glycosylation with a ß-d-galacto-heptopyranoside donor followed by a one-pot sequential C-2 and C-3 inversion. During the syntheses, we uncovered a number of interesting conformational effects with regard to the 6-deoxy-ido-heptopyranose ring, the glycosidic linkage connecting the two monosaccharides, and the MeOPN groups.


Assuntos
Campylobacter jejuni , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Campylobacter jejuni/química , Campylobacter jejuni/metabolismo , Monossacarídeos , Glicosilação
3.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334616

RESUMO

Fundamental functions of the intestinal epithelium include the digestion of food, absorption of nutrients, and its ability to act as the first barrier against intruding microbes. Campylobacter jejuni is a major zoonotic pathogen accounting for a substantial portion of bacterial foodborne illnesses. The germ colonizes the intestines of birds and is mainly transmitted to humans through the consumption of contaminated poultry meat. In the human gastrointestinal tract, the bacterium triggers campylobacteriosis that can progress to serious secondary disorders, including reactive arthritis, inflammatory bowel disease and Guillain-Barré syndrome. We recently discovered that C. jejuni serine protease HtrA disrupts intestinal epithelial barrier functions via cleavage of the tight and adherens junction components occludin, claudin-8 and E-cadherin. However, it is unknown whether epithelial damage is mediated by the secreted soluble enzyme, by HtrA contained in shed outer-membrane vesicles (OMVs) or by another mechanism that has yet to be identified. In the present study, we investigated whether soluble recombinant HtrA and/or purified OMVs induce junctional damage to polarized intestinal epithelial cells compared to live C. jejuni bacteria. By using electron and confocal immunofluorescence microscopy, we show that HtrA-expressing C. jejuni bacteria trigger efficient junctional cell damage, but not soluble purified HtrA or HtrA-containing OMVs, not even at high concentrations far exceeding physiological levels. Instead, we found that only bacteria with active protein biosynthesis effectively cleave junctional proteins, which is followed by paracellular transmigration of C. jejuni through the epithelial cell layer. These findings shed new light on the pathogenic activities of HtrA and virulence strategies of C. jejuni.


Assuntos
Campylobacter jejuni , Humanos , Campylobacter jejuni/metabolismo , Serina Proteases/metabolismo , Serina Endopeptidases/metabolismo , Bactérias/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo
4.
Int J Biol Macromol ; 264(Pt 1): 130388, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417756

RESUMO

Among the major Surface Exposed Colonization Proteins (SECPs) of Campylobacter jejuni (C. jejuni), Jejuni lipoprotein A (JlpA) plays a crucial role in host cell adhesion specifically by binding to the N-terminal domain of the human heat shock protein 90α (Hsp90α-NTD). Although the JlpA binding to Hsp90α activates NF-κB and p38 MAP kinase pathways, the underlying mechanism of JlpA association with the cellular receptor remains unclear. To this end, we predicted two potential receptor binding sites within the C-terminal domain of JlpA: one spanning from amino acid residues Q332-A354 and the other from S258-T295; however, the latter exhibited weaker binding. To assess the functional attributes of these predicted sequences, we generated two JlpA mutants (JlpAΔ1: S258-T295; JlpAΔ2: Q332-A354) and assessed the Hsp90α-binding affinity-kinetics by in vitro and ex vivo experiments. Our findings confirmed that the residues Q332-A354 are of greater importance in host cell adhesion with a measurable impact on cellular responses. Further, thermal denaturation by circular dichroism (CD) confirmed that the reduced binding affinity of the JlpAΔ2 to Hsp90α is not associated with protein folding or stability. Together, this study provides a possible framework for determining the molecular function of designing rational inhibitors efficiently targeting JlpA.


Assuntos
Campylobacter jejuni , Lipoproteína(a) , Humanos , Lipoproteína(a)/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Ligantes , Proteínas de Choque Térmico/metabolismo , NF-kappa B/metabolismo
5.
Vet Microbiol ; 287: 109918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029692

RESUMO

Microaerophilic, Gram-negative Campylobacter jejuni is the causative agent of campylobacteriosis, the most common bacterial gastrointestinal infection worldwide. Adhesion is the crucial first step in both infection or interaction with the host and biofilm formation, and is a critical factor for bacterial persistence. Here we describe the proteins and other surface structures that promote adhesion to various surfaces, including abiotic surfaces, microorganisms, and animal and human hosts. In addition, we provide insight into the distribution of adhesion proteins among strains from different ecological niches and highlight unexplored proteins involved in C. jejuni adhesion. Protein-protein, protein-glycan, and glycan-glycan interactions are involved in C. jejuni adhesion, with different factors contributing to adhesion to varying degrees under different circumstances. As adhesion is essential for survival and persistence, it represents an interesting target for C. jejuni control. Knowledge of the adhesion process is incomplete, as different molecular and functional aspects have been studied for different structures involved in adhesion. Therefore, it is important to strive for an integration of different approaches to obtain a clearer picture of the adhesion process on different surfaces and to consider the involvement of proteins, glycoconjugates, and polysaccharides and their cooperation.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Humanos , Animais , Aderência Bacteriana , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Estrutura Molecular , Polissacarídeos , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/microbiologia
6.
Front Cell Infect Microbiol ; 13: 1289359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035327

RESUMO

Cytolethal distending toxins (CDTs) are intracellular-acting bacterial genotoxins generated by a diverse group of mucocutaneous human pathogens. CDTs must successfully bind to the plasma membrane of host cells in order to exert their modulatory effects. Maximal toxin activity requires all three toxin subunits, CdtA, CdtB, and CdtC, which, based primarily on high-resolution structural data, are believed to preassemble into a tripartite complex necessary for toxin activity. However, biologically active toxin has not been experimentally demonstrated to require assembly of the three subunits into a heterotrimer. Here, we experimentally compared concentration-dependent subunit interactions and toxin cellular activity of the Campylobacter jejuni CDT (Cj-CDT). Co-immunoprecipitation and dialysis retention experiments provided evidence for the presence of heterotrimeric toxin complexes, but only at concentrations of Cj-CdtA, Cj-CdtB, and Cj-CdtC several logs higher than required for Cj-CDT-mediated arrest of the host cell cycle at the G2/M interface, which is triggered by the endonuclease activity associated with the catalytic Cj-CdtB subunit. Microscale thermophoresis confirmed that Cj-CDT subunit interactions occur with low affinity. Collectively, our data suggest that at the lowest concentrations of toxin sufficient for arrest of cell cycle progression, mixtures of Cj-CdtA, Cj-CdtB, and Cj-CdtC consist primarily of non-interacting, subunit monomers. The lack of congruence between toxin tripartite structure and cellular activity suggests that the widely accepted model that CDTs principally intoxicate host cells as preassembled heterotrimeric structures should be revisited.


Assuntos
Toxinas Bacterianas , Campylobacter jejuni , Humanos , Toxinas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Ciclo Celular
7.
J Environ Sci Health B ; 58(12): 711-717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37897369

RESUMO

Foodborne pathogen Campylobacter jejuni has been associated with ruminants. The objectives of this experiment were to determine C. jejuni survivability in mixed in vitro rumen microbial populations and the impact on methane production with or without methane inhibitors 2-bromosulfonate (BES) and/or sodium nitrate. When inoculated into rumen microbial populations without or with 0.5 mM BES, 5.0 mM nitrate or their combination, C. jejuni viability decreased from 4.7 ± 0.1 log10 colony forming units (CFU)/mL after 24 h. Loss of C. jejuni viability was greater (P < 0.05) when incubated under 100% CO2 compared to 50% H2:50% CO2, decreasing 1.46 versus 1.15 log units, respectively. C. jejuni viability was also decreased (P < 0.05) by more than 0.43 log units by the anti-methanogen treatments. Rumen microbial populations produced less methane (P = 0.05) when incubated with than without C. jejuni regardless of whether under 100% CO2 or 50% H2:50% CO2. For either gas phase, nitrate was decreased (13.2 versus 37.9%) by the anti-methanogen treatments versus controls although not always significant. C. jejuni-inoculated populations metabolized 16.4% more (P < 0.05) nitrate under H2:CO2 versus 100% CO2. Apparently, C. jejuni can compete for H2 with methanogens but has limited survivability under rumen conditions.


Assuntos
Campylobacter jejuni , Animais , Bovinos , Campylobacter jejuni/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Rúmen
8.
ACS Infect Dis ; 9(11): 2325-2339, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37802046

RESUMO

Naturally secreted outer membrane vesicles (OMVs) from gut microbes carry diverse cargo, including proteins, nucleic acids, toxins, and many unidentified secretory factors. Bacterial OMVs can shuttle molecules across different cell types as a generalized secretion system, facilitating bacterial pathogenicity and self-survival. Numerous mucosal pathogens, including Campylobacter jejuni (C. jejuni), share a mechanism of harmonized secretion of major virulence factors. Intriguingly, as a common gut pathogen, C. jejuni lacks some classical virulence-associated secretion systems; alternatively, it often employs nanosized lipid-bound OMVs as an intensive strategy to deliver toxins, including secretory proteins, into the target cells. To better understand how the biophysical and compositional attributes of natural OMVs of C. jejuni regulate their cellular interactions to induce a biologically relevant host response, we conducted an in-depth morphological and compositional analysis of naturally secreted OMVs of C. jejuni. Next, we focused on understanding the mechanism of host cell-specific OMVs uptake from the extracellular milieu. We showed that intracellular perfusion of OMVs is mediated by cytosolic as well as multiple endocytic uptake processes due to the heterogenic nature, abundance of surface proteins, and membrane phospholipids acquired from the source bacteria. Furthermore, we used human and avian cells as two different host targets to provide evidence of target cell-specific preferential uptake of OMVs. Together, the present study provides insight into the unique functionality of natural OMVs of C. jejuni at the cellular interface, upholding their potential for multimodal use as prophylactic and therapeutic carriers.


Assuntos
Campylobacter jejuni , Vesículas Extracelulares , Humanos , Campylobacter jejuni/metabolismo , Transporte Biológico , Fatores de Virulência/metabolismo , Virulência
9.
J Proteome Res ; 22(11): 3519-3533, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37830485

RESUMO

Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.


Assuntos
Campylobacter jejuni , Lisina , Humanos , Lisina/metabolismo , Fibronectinas , Campylobacter jejuni/metabolismo , Acetilação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo
10.
Protein Sci ; 32(7): e4683, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209283

RESUMO

Bacterial lytic transglycosylases (LTs) contribute to peptidoglycan cell wall metabolism and are potential drug targets to potentiate ß-lactam antibiotics to overcome antibiotic resistance. Since LT inhibitor development is underexplored, we probed 15 N-acetyl-containing heterocycles in a structure-guided fashion for their ability to inhibit and bind to the Campylobacter jejuni LT Cj0843c. Ten GlcNAc analogs were synthesized with substitutions at the C1 position, with two having an additional modification at the C4 or C6 position. Most of the compounds showed weak inhibition of Cj0843c activity. Compounds with alterations at the C4 position, replacing the -OH with a -NH2 , and C6 position, the addition of a -CH3 , yielded improved inhibitory efficacy. All 10 GlcNAc analogs were crystallographically analyzed via soaking experiments using Cj0843c crystals and found to bind to the +1 +2 saccharide subsites with one of them additionally binding to the -2 -1 subsite region. We also probed other N-acetyl-containing heterocycles and found that sialidase inhibitors N-acetyl-2,3-dehydro-2-deoxyneuraminic acid and siastatin B inhibited Cj0843c weakly and crystallographically bound to the -2 -1 subsites. Analogs of the former also showed inhibition and crystallographic binding and included zanamivir amine. This latter set of heterocycles positioned their N-acetyl group in the -2 subsite with additional moieties interacting in the -1 subsite. Overall, these results could provide novel opportunities for LT inhibition via exploring different subsites and novel scaffolds. The results also increased our mechanistic understanding of Cj0843c regarding peptidoglycan GlcNAc subsite binding preferences and ligand-dependent modulation of the protonation state of the catalytic E390.


Assuntos
Campylobacter jejuni , Peptidoglicano , Peptidoglicano/metabolismo , Campylobacter jejuni/metabolismo , Glicosiltransferases/química , Ligação Proteica
11.
mBio ; 14(3): e0356422, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37052512

RESUMO

Chemotaxis is an important virulence factor in some enteric pathogens, and it is involved in the pathogenesis and colonization of the host. However, there is limited knowledge regarding the environmental signals that promote chemotactic behavior and the sensing of these signals by chemoreceptors. To date, there is no information on the ligand molecule that directly binds to and is sensed by Campylobacter jejuni Tlp1, which is a chemoreceptor with a dCache-type ligand-binding domain (LBD). dCache (double Calcium channels and chemotaxis receptor) is the largest group of sensory domains in bacteria, but the dCache-type chemoreceptor that directly binds to formate has not yet been discovered. In this study, formate was identified as a direct-binding ligand of C. jejuni Tlp1 with high sensing specificity. We used the strategy of constructing a functional hybrid receptor of C. jejuni Tlp1 and the Escherichia coli chemoreceptor Tar to screen for the potential ligand of Tlp1, with the binding of formate to Tlp1-LBD being verified using isothermal titration calorimetry. Molecular docking and experimental analyses indicated that formate binds to the membrane-proximal pocket of the dCache subdomain. Chemotaxis assays demonstrated that formate elicits robust attractant responses of the C. jejuni strain NCTC 11168, specifically via Tlp1. The chemoattraction effect of formate via Tlp1 promoted the growth of C. jejuni, especially when competing with Tlp1- or CheY-knockout strains. Our study reveals the molecular mechanisms by which C. jejuni mediates chemotaxis toward formate, and, to our knowledge, is the first report on the high-specificity binding of the dCache-type chemoreceptor to formate as well as the physiological role of chemotaxis toward formate. IMPORTANCE Chemotaxis is important for Campylobacter jejuni to colonize favorable niches in the gastrointestinal tract of its host. However, there is still a lack of knowledge about the ligand molecules for C. jejuni chemoreceptors. The dCache-type chemoreceptor, namely, Tlp1, is the most conserved chemoreceptor in C. jejuni strains; however, the direct-binding ligand(s) triggering chemotaxis has not yet been discovered. In the present study, we found that the ligand that binds directly to Tlp1-LBD with high specificity is formate. C. jejuni exhibits robust chemoattraction toward formate, primarily via Tlp1. Tlp1 is the first reported dCache-type chemoreceptor that specifically binds formate and triggers strong chemotaxis. We further demonstrated that the formate-mediated promotion of C. jejuni growth is correlated with Tlp1-mediated chemotaxis toward formate. Our work provides important insights into the mechanism and physiological function of chemotaxis toward formate and will facilitate further investigations into the involvement of microbial chemotaxis in pathogen-host interactions.


Assuntos
Campylobacter jejuni , Quimiotaxia , Quimiotaxia/fisiologia , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Proteínas de Bactérias/metabolismo , Formiatos/metabolismo
12.
Appl Microbiol Biotechnol ; 107(9): 2725-2754, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941439

RESUMO

Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Humanos , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Fibronectinas/metabolismo , Dineínas/metabolismo , Fatores de Virulência/metabolismo , Adesinas Bacterianas/metabolismo , Células Epiteliais/microbiologia , Aderência Bacteriana
13.
Biomolecules ; 13(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979384

RESUMO

BACKGROUND: Campylobacter jejuni (C. jejuni) is one of the most common causes of bacterial gastroenteritis worldwide. One sequela of this infection is the development of post-infectious irritable bowel syndrome (PI-IBS). It has been suggested that a dysfunctional intestinal barrier may promote IBS development. We aimed to test this hypothesis against the background of the leaky gut concept for low-grade inflammation in PI-IBS. METHODS: We identified patients with persistent PI-IBS symptoms after C. jejuni infection. During sigmoidoscopy, forceps biopsies were obtained for electrophysiological measurements of epithelial transport and barrier function in miniaturized Ussing devices. C. jejuni absence was checked by PCR and cytokine production with immunohistochemistry. RESULTS: In PI-IBS, the epithelial resistance of the colon epithelium was unaltered, reflecting an intact paracellular pathway. In contrast, temperature-dependent horseradish peroxidase (HRP, 44 kDa) permeation increased. Short-circuit current (Isc) reflecting active anion secretion and ENaC-dependent electrogenic sodium absorption was unaffected. Early endosome antigen-1 (EEA1) and IL-4 levels increased. C. jejuni is not incorporated into the resident microbiota of the colon mucosa in PI-IBS. CONCLUSIONS: In PI-IBS after C. jejuni infection, macromolecule uptake via endocytosis was enhanced, leading to low-grade inflammation with pro-inflammatory cytokine release. The findings will allow C. jejuni-induced pathomechanisms to be targeted during infection and, thereafter to reduce sequelae such as PI-IBS.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/microbiologia , Campylobacter jejuni/metabolismo , Inflamação/complicações , Infecções por Campylobacter/complicações , Infecções por Campylobacter/microbiologia , Citocinas/metabolismo
14.
Biomolecules ; 13(3)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36979449

RESUMO

C. jejuni is an important food-borne pathogen displaying high genetic diversity, substantially based on natural transformation. The mechanism of DNA uptake from the environment depends on a type II secretion/type IV pilus system, whose components are partially known. Here, we quantified DNA uptake in C. jejuni at the single cell level and observed median transport capacities of approximately 30 kb per uptake location. The process appeared to be limited by the initialization of DNA uptake, was finite, and, finalized within 30 min of contact to DNA. Mutants lacking either the outer membrane pore PilQ or the inner membrane channel ComEC were deficient in natural transformation. The periplasmic DNA binding protein ComE was negligible for DNA uptake, which is in contrast to its proposed function. Intriguingly, a mutant lacking the unique periplasmic protein Cj0683 displayed rare but fully functional DNA uptake events. We conclude that Cj0683 was essential for the efficient initialization of DNA uptake, consistent with the putative function as a competence pilus protein. Unravelling features important in natural transformation might lead to target identification, reducing the adaptive potential of pathogens.


Assuntos
Campylobacter jejuni , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Transformação Bacteriana , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
15.
Biomolecules ; 13(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830692

RESUMO

Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.


Assuntos
Campylobacter jejuni , Humanos , Campylobacter jejuni/metabolismo , Estudos Prospectivos , Serina Proteases/metabolismo , Serina Endopeptidases/metabolismo , Intestinos/microbiologia
16.
Biomolecules ; 13(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671522

RESUMO

Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Gastroenterite , Humanos , Campylobacter jejuni/metabolismo , Virulência , Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/metabolismo , Infecções por Campylobacter/microbiologia , Fatores de Virulência/metabolismo
17.
Exp Mol Med ; 55(2): 377-384, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36720917

RESUMO

Various CRISPR‒Cas9 orthologs are used in genome engineering. One of the smallest Cas9 orthologs is cjCas9 derived from Campylobacter jejuni, which is a highly specific genome editing tool. Here, we developed cjCas9-based base editors including a cytosine base editor (cjCBEmax) and an adenine base editor (cjABE8e) that can successfully induce endogenous base substitutions by up to 91.2% at the HPD gene in HEK293T cells. Analysis of the base editing efficiency of 13 endogenous target sites showed that the active windows of cjCBEmax and cjABE8e are wider than those of spCas9-based base editors and that their specificities are slightly lower than that of cjCas9. Importantly, engineered cjCas9 and gRNA scaffolds can improve the base editing efficiency of cjABE8e by up to 6.4-fold at the HIF1A gene in HEK293T cells. Due to its small size, cjABE8e can be packaged in a single adeno-associated virus vector with two tandem arrays of gRNAs, and the delivery of the resulting AAV could introduce base substitutions at endogenous ANGPT2 and HPD target sites. Overall, our findings have expanded the potential of the use of base editors for in vivo or ex vivo therapeutic approaches.


Assuntos
Campylobacter jejuni , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Células HEK293 , RNA Guia de Sistemas CRISPR-Cas
18.
Proteins ; 91(3): 293-299, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36201627

RESUMO

In Gram-negative bacteria, lipopolysaccharide (LPS) is an essential component of the asymmetric outer membrane (OM). LptE is an OM lipoprotein that forms a complex with the ß-barrel OM protein, LptD. Incorporation of LPS into the OM outer leaflet is essential for bacterial viability, and mediated by the LptD/E complex. The genome of Campylobacter jejuni, a major foodborne pathogen, contains over 20 putative lipoproteins including Cj1090c. Here, we report the crystal structure of Cj1090c at 2.4 Å resolution, revealing structural evidence for LptE in C. jejuni. The analysis of this crystal structure, along with the genomic context, allows us to propose the C. jejuni LPS transport system for the first time, and permits for discussion of the features of the LptD/E complex of C. jejuni.


Assuntos
Campylobacter jejuni , Lipopolissacarídeos , Membrana Celular/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Transporte Biológico , Lipoproteínas/genética , Lipoproteínas/metabolismo
19.
BMC Microbiol ; 22(1): 238, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199015

RESUMO

BACKGROUND: Campylobacter spp. are the leading cause of bacterial food-borne illness in humans worldwide, with Campylobacter jejuni responsible for 80% of these infections. There is an urgent need to understand fundamental C. jejuni biology for the development of new strategies to prevent and treat infections. The range of molecular tools available to regulate gene expression in C. jejuni is limited, which in turn constrains our ability to interrogate the function of essential and conditionally essential genes. We have addressed this by developing and utilising a CRISPR-based interference system known as CRISPRi in C. jejuni to control gene expression. To achieve this, a catalytically inactive ("dead") cas9 and sgRNA backbone from the Streptococcus pyogenes CRISPRi system was combined with C. jejuni-derived promoters of predetermined expression activities to develop a CRISPRi-based repression tool in C. jejuni strains M1Cam and 81-176. RESULTS: The CRISPRi tool was validated through successful repression of the arylsulphatase-encoding gene astA using a range of sgRNA target sequences spanning the astA gene. The tool was also applied to target astA in an M1Cam CRISPR-Cas9 deletion strain, which showed that the presence of an endogenous CRISPR-Cas9 system did not affect the activity of the CRISPRi-based repression tool. The tool was further validated against the hippicurase-encoding gene hipO. Following this, the flagella genes flgR, flaA, flaB and both flaA and flaB were targeted for CRISPRi-based repression, which resulted in varying levels of motility reduction and flagella phenotypes as determined by phenotypical assays and transmission electron microscopy (TEM). CONCLUSIONS: This is the first report of a CRISPRi-based tool in C. jejuni, which will provide a valuable resource to the Campylobacter community.


Assuntos
Campylobacter jejuni , Arilsulfatases/genética , Arilsulfatases/metabolismo , Sistemas CRISPR-Cas , Campylobacter jejuni/metabolismo , Flagelos/genética , Regulação da Expressão Gênica , Humanos , Streptococcus pyogenes/genética
20.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077065

RESUMO

Homologous recombination is involved in repairing DNA damage, contributing to maintaining the integrity and stability of viral and cellular genomes. In bacteria, the recombination mediator proteins RecO and RecR are required to load the RecA recombinase on ssDNA for homologous recombination. To structurally and functionally characterize RecO, we determined the crystal structure of RecO from Campylobacter jejuni (cjRecO) at a 1.8 Å resolution and biochemically assessed its capacity to interact with DNA and a metal ion. cjRecO folds into a curved rod-like structure that consists of an N-terminal domain (NTD), C-terminal domain (CTD), and Zn2+-binding domain (ZnD). The ZnD at the end of the rod-like structure coordinates three cysteine residues and one histidine residue to accommodate a Zn2+ ion. Based on an extensive comparative analysis of RecO structures and sequences, we propose that the Zn2+-binding consensus sequence of RecO is CxxC…C/HxxC/H/D. The interaction with Zn2+ is indispensable for the protein stability of cjRecO but does not seem to be required for the recombination mediator function. cjRecO also interacts with ssDNA as part of its biological function, potentially using the positively charged patch in the NTD and CTD. However, cjRecO displays a low ssDNA-binding affinity, suggesting that cjRecO requires RecR to efficiently recognize ssDNA for homologous recombination.


Assuntos
Campylobacter jejuni , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , DNA/química , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...